
Multi-component Similarity Method for
Web Product Duplicate Detection

Ronald van Bezu
ronaldvanbezu@gmail.com

Sjoerd Borst
s.v.borst@gmail.com

Rick Rijkse
rickrijkse780@gmail.com

Jim Verhagen
j.m.verhagen@gmail.com

Damir Vandic
vandic@ese.eur.nl

Flavius Frasincar
frasincar@ese.eur.nl

Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

ABSTRACT
Due to the growing number of Web shops, aggregating prod-
uct data from the Web is growing in importance. One of
the problems encountered in product aggregation is dupli-
cate detection. In this paper, we extend and significantly
improve an existing state-of-the-art product duplicate de-
tection method. Our approach employs a novel method for
combining the titles’ and the attributes’ similarities into a
final product similarity. We use q-grams to handle partial
matching of words, such as abbreviations. Where existing
methods cluster products of only two Web shops, we propose
a hierarchical clustering method to handle multiple Web
shops. Applying our new method to a dataset of TV’s from
four Web shops reveals that it significantly outperforms the
Hybrid Similarity Method, the Title Model Words Method,
and the well-known TF-IDF method, with an F1 score of
0.475 compared to 0.287, 0.298, and 0.335, respectively.

1. INTRODUCTION
With a substantial growth in the amount of Web shops

[13], the field of product duplicate detection is becoming
increasingly important. When aggregating or comparing
data from different Web shops, one should take into account
that a single product might be represented in different ways.
Therefore, duplicate detection methods are used to identify
which product descriptions represent the same product.

Such duplicate detection methods on the Web are harder
to devise than in relational databases. On the Web we
have to deal with unstructured data, where the keys and
their values are not predefined. API’s and techniques such
as text mining could be used to extract useful information
from the Web, to be employed in the duplicate detection
process. Currently, the field of duplicate detection on the
Web is mostly focused on pair-wise duplicate detection [3,
15]. However, since the Web is crowded with Web shops
selling identical items, future duplicate detection algorithms
must be able to handle more than two products.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04
http://dx.doi.org/10.1145/2695664.2695818 ...$15.00.

We propose hierarchical clustering as a solution to the de-
tection of product duplicates for more than two Web shops.
Hierarchical clustering (using a bottom-up, single-linkage
approach) fits the concept of initially treating each product
as separate, and incrementally clustering products that are
similar. We also argue that certain requirements, such as not
clustering products within a Web shop, which is assumed to
only contain different products, are well- supported by the
hierarchical clustering through implementation of heuristics
of thresholds and rules in the iterations of the clustering
procedure.

In this paper, we also aim to both extend and improve a
state-of-the-art duplicate detection algorithm for products
on the Web, called the Hybrid Similarity Method [3]. This
method builds on a procedure that uses model words in the
product titles to detect duplicates, called the Title Model
Words Method [15], and is designed to cluster products from
only two Web shops. We adapt these methods to calculate
dissimilarity values between all products, needed for hier-
archical clustering. Additionally, we make improvements
through the use of q-grams, to deal with typographical errors
and abbreviations, as a different similarity measure between
strings, checking products titles for different brands that
are manually provided, and using the Title Model Words
Method in a more dynamic and less strict way.

The structure of the paper is as follows. First, we discuss
existing literature that is related to the topic of product
duplicate detection on the Web in Sect. 2. In Sect. 3, we
describe a solution to cluster duplicate products dealing with
multiple Web shops and based on this solution we present
our Multi-component Similarity Method. Next, we evaluate
its performance relative to the original Hybrid Similarity
Method and two other benchmark models in Sect. 4. In
Sect. 5, we conclude and identify possible further research.

2. RELATED WORK
Although the field of duplicate detection on the Web is

relatively young, many algorithms for duplicate detection
can be found in the literature for databases and information
networks. Because the problem of duplicate detection can
be reduced to a problem of obtaining a similarity for every
pair of objects, the literature goes back to 1983’s paper of
Salton and Mcgill [11], where a similarity-based information
retrieval system is introduced. More recently, the method
from [5] was introduced, where trainable measures of tex-
tual similarities were used to improve the process of finding
duplicate records.

In this paper we extend existing methods for product du-
plicate detection on the Web to overcome some of their
shortfalls. One method we build on is the Title Model Words
Method (TMWM) [15], which we also use to benchmark our
approach. This method uses the so-called model words ex-
tracted from the title of product descriptions on the Web
to perform duplicate detection. First, the cosine similarity
of two product names is calculated. A threshold α is used
to determine if the considered products are duplicates. If
the products are not duplicates according to the cosine sim-
ilarity, the method continues by extracting model words for
the products under consideration. Model words are defined
as words consisting of both numeric and non-numeric to-
kens. When the non-numeric part is approximately the same
while the numeric part is not, the two products are different.
Here, approximately the same means that the Levenshtein
distance is smaller than a threshold of 0.5. When the model
words match, we might have duplicate products. An initial
product name similarity is calculated as a weighted average
of the cosine similarity and the average Levenshtein similar-
ity. If the two products’ model words contain at least one
pair where the non-numeric part is approximately the same
and the numeric part is equal, the product name similar-
ity is updated to a weighted average of the initial product
name similarity and the average Levenshtein similarity of
the involved model words. Based on this final similarity and
a threshold ε, we conclude whether the two products are
duplicates.

Another baseline method we use is based on the Term
Frequency – Inverse Document Frequency method (TF-IDF)
[11]. This is a well-known method in the offline duplicate
detection domain [8]. The term frequency is defined as the
number of times a word occurs in a document. The inverse
document frequency measures whether this word is com-
mon or rare across all documents. The Inverse Document
Frequency is defined as the logarithm of the number of doc-
uments minus the logarithm of the number of documents
containing the word. The TF-IDF value is defined as the
term frequency divided by the inverse document frequency.
We compute the TF-IDF value for each unique word that oc-
curs in the product attribute values. These values are stored
in a vector and we use the cosine similarity of these vectors
to obtain a similarity matrix for all combinations of prod-
ucts. This similarity matrix is transformed into a dissimi-
larity matrix on which agglomerative hierarchical clustering
is applied. We use an adjusted single-linkage approach, as
explained in the next section, and combine clusters until
the dissimilarity value is higher than a predefined threshold
value ε of 0.5.

The Hybrid Similarity Method (HSM) in [3] builds on
TMWM of [15] by including additional information given
by the product attributes. As a first step, TMWM is used
to determine if the two products under consideration are du-
plicates based on the product title. If this is not the case, a
new similarity measure is calculated consisting of two parts.
First the attribute keys of both products are compared to
check for similar keys, based on a chosen measurement. For
the Key-Value Pairs (KVP) that are found, if any, an av-
erage similarity is calculated between the corresponding at-
tribute values. Second, for all KVP where no matching keys
were found, the model words from the attributes values are
extracted. Next, the percentage of matching model words
between the sets of model words of the two products is com-

puted. The similarity is calculated as the weighted average
of the average similarity of the values of the matched keys
and the percentage of matching model words from the values
of the keys that did not have a match.

Although HSM takes away most of the shortcomings of
TMWM, HSM has its own difficulties. One shortcoming
of HSM is that its solution lacks invariance in the order of
product comparison. When some product A from the second
Web shop is considered to be a duplicate of some product
C of the first Web shop, they are immediately clustered.
If instead a different product B from the second Web shop
would have a better match to product C, but is considered
later on in the algorithm, it will therefore not be clustered
to product C because its cluster is full.

Furthermore, the generality of the model comes at a cost
of precision. We argue that a more specific approach (for
our domain of TV’s) can result in a boost in performance.
At the same time HSM is not so general when it comes to
the number of Web shops it is able to compare, namely two.
We instead propose an algorithm that is not limited to a
given amount of Web shops.

Last, we argue that the use of TMWM in HSM is too
restrictive. It is applied as a definite first step of duplicate
detection in the algorithm. When duplicates are indeed de-
tected, the algorithm directly proceeds to the next product
combination. However, in the evaluation of the algorithms
[3], it is shown that TMWM has only a precision of 0.556,
whereas HSM has a precision of 0.741. TMWM thus de-
clares a false duplicate in 44% of the cases, and HSM fur-
ther improves this to 26% for the set of products declared
non-duplicates by TMWM. Although its parameters are op-
timized with stricter thresholds when applied in HSM, we
argue that using TMWM as a definitive positive-duplicate
detection step could in fact be detrimental to HSM’s preci-
sion. Instead, we propose to use TMWM as an additional
similarity measure in the algorithm.

3. METHODS
In this section, we present several methods that address

the issues described in the previous section. First, we discuss
the handling of multiple Web shops in the Multi-component
Similarity Method (MSM) through hierarchical clustering in
Sect. 3.1. Second, we propose an extended version of HSM
[3] in Sect. 3.2.

3.1 Hierarchical Clustering
HSM could be extended to cluster products of multiple

Web shops by subsequently clustering all products of a shop
to existing clusters, starting with each product of the first
Web shop in its own cluster. However, we argue that the
solution would not be invariant in the chosen order of Web
shops, for the same reason as given in the previous section.
Therefore, we apply a clustering method. As we want to
compare HSM to MSM and other baseline methods in a fair
way, we apply the clustering method to all models.

Two popular methods are K-means and hierarchical clus-
tering [12]. K-means aims at partitioning all observations
into k sets. Since we do not know how many duplicate prod-
ucts there are, k is unknown. We apply hierarchical clus-
tering, which does not impose such prior information. The
idea of hierarchical clustering is to construct a whole range
of cluster solutions, where going from a solution of K + 1
to K clusters, two of the K + 1 clusters must be merged.

In this way, a hierarchy of clusters is obtained. There are
two types of hierarchical clustering: agglomerative (bottom-
up approach) and divisive (top-down approach). A natural
way to cluster the products is the so-called agglomerative
approach, which starts with each product in a separate clus-
ter. We merge the two closest clusters Ci and Cj based on
the dissimilarities between the products. We use a criterion
based on minimum or single linkage clustering. We define
the dissimilarities between the new cluster Cn and the other
clusters Ck as

dCn,Ck = min(dCi,Ck , dCj ,Ck) (1)

with dCn,Ck =∞ if max(dCi,Ck , dCj ,Ck) =∞.
We keep on merging until the minimum dissimilarity be-

tween clusters is higher than a predefined threshold ε. Other
clustering criteria are maximum or complete linkage, and av-
erage linkage clustering. A disadvantage of single linkage is
the risk of cluster “chaining”, however, since we have mul-
tiple components of similarities in the models, it is possible
that in a cluster of products A, B and C, the pair A and B
matches highly only on the title, while B and C only match
highly on the product features. It is then possible that A
and C have few matching similarities, while they are still
duplicates. B is then the linking product between A and C,
making single linkage ideal for this situation.

Note that this value of ε is analogous to the earlier thresh-
old δ of HSM as in [3], where two products are only eligible
as best clustering option if their similarity is larger than δ,
in our method smaller than dissimilarity value ε = 1 − δ.
In TMWM, this ε is analogous to 1 − β because only title-
similarities of either 1 or greater than β are considered for
clustering. These analogies show why hierarchical cluster-
ing is suitable for extending the existing methods to handle
multiple Web shops, while at the same time keeping their
structure intact.

3.2 Multi-component Similarity Method
As mentioned before, our method builds on HSM [3]. A

serious disadvantage of the model as previously defined, is
that it can only handle comparisons between two Web shops.
We have used hierarchical clustering to overcome this draw-
back. To be able to apply a hierarchical clustering method
a dissimilarity measure between every pair of products is
needed. Therefore we adjust and extend the algorithm in
the following manner.

HSM starts by assigning all products of the first Web
shop to their own clusters, and loops for each product of
the second Web shop over all these products to cluster the
products with the highest similarity. Our method, however,
does not cluster products during these iterations. Instead,
we loop over all product combinations and calculate a sim-
ilarity value, that is later transformed into a dissimilarity
value for hierarchical clustering. Since similarity values are
calculated for textual content we decided to pre-process the
product descriptions by removing all common characters like
comma’s, slashes, and white space. In this way, we remove
any noise from the data. Furthermore, each capital letter is
replaced by its lowercase counterpart.

We assume that there are no duplicate products within a
Web shop. This is an assumption that is made for all other
models as well. We therefore start our algorithm by checking
for the pair of products under consideration if their shop

names are equal. If this is the case, we assign a dissimilarity
of positive infinity.

The pseudo-code of our algorithm is given in Algorithm
1. As mentioned in Sect. 2 we aim at an improved preci-
sion by giving up some of the HSM’s generality. This is
translated in our algorithm in the form of the diffBrand()
function, which uses a manually created list of the most
common brand names. By including this list we are able
to check if two products are from different brands. A dis-
similarity value of positive infinity is assigned to prevent
the clustering of these products. The reasoning behind this
approach is that products produced by different companies
will not be duplicates. Although creating this list is done
manually, including it as an input variable is an elegant way
of providing the algorithm with specific task information.
Also, small lists of brand names for different product types
can be easily found on the Web [16].

Our proposed similarity function consists of three parts.
The first part uses the KVP of the products that are not as-
signed a dissimilarity value by using the brand list. The keys
of these products are compared. Where HSM uses a cosine-
and a Jaro-Winkler measure to compare two keys, we de-
cided to use overlapping q-grams as a similarity measure.
The cosine similarity is sensitive to misspellings, while the
Jaro-Winkler is token-based. The overlapping q-gram mea-
sure uses tokens of q characters, in our case q = 3, taken
from a sliding window from left to right of the string, in-
serting additional dummy characters at the start and end
of the string. As a result of the overlapping tokens, partial
matches of words still contribute to the similarity, which
accounts for words with misspellings or abbreviations. In
this way, it forms a tradeoff between the cosine- and Jaro-
Winkler similarity. If the keys match, the q-gram similar-
ity between the corresponding values is calculated, and the
similarity is added with a weight to the similarity of the
two products. We calculate the q-gram similarity value be-
tween two strings s1 and s2, with their amount of tokens
n1 and n2, respectively, by dividing the amount of (one-on-
one) matching tokens by the total amount of tokens. This
is equivalent to:

n1 + n2− qGramDistance(s1, s2)

n1 + n2
,

where qGramDistance(s1, s2) is the number of different q-
gram occurrences in s1 and s2 [14].

The KVP that had no key-match contribute to the second
part of our similarity measure. We extract model words
from the values of these KVP and calculate the percentage
of matching words. This procedure is the same as in HSM.

The final part of the similarity is obtained by calculat-
ing a similarity based on TMWM. One of the weak fea-
tures of HSM was the restrictiveness of the implementation
of TMWM, as mentioned in Sect. 2. We have implemented a
weighted titleSim as the third part of our similarity. TMWM
is adjusted to return similarities instead of a clustering of
products. When the original TMWM clustered two prod-
ucts based on the cosine similarity measure of the product
names, it now returns a similarity of 1, and when products
were eligible for clustering based on the model words, it now
returns the calculated similarity. If, however, products were
not clustered, the adjusted TMWM function returns a sim-
ilarity of -1 which is not used in the final calculation of our

method. Therefore we calculate the similarity as:

hSim = θ1∗avgSim+θ2∗mwPerc+µ∗titleSim∗1{titleSim 6=−1},
(2)

where 1{•} is an indicator function. The parameters θ1
and θ2 together form the remaining weight of 1 − µ. Of
this remaining weight, θ1 is defined to be the proportion of
matching keys relative to the lowest amount of KVP of both
products.

After transforming the similarities from (2) to dissimilar-
ities (1 − hSim) we run our clustering algorithm (i.e., on
line 43 the function hClustering(disSim, ε)) where the ma-
trix of dissimilarities is an input alongside the dissimilarity
threshold ε. The algorithm stops when the smallest dissim-
ilarity between the built clusters becomes larger than the
dissimilarity threshold ε.

4. EVALUATION
In this section, we compare the performance of MSM with

the performance of the benchmark methods TF-IDF, TMWM,
and HSM. We apply the methods to a dataset consisting of
1629 TV’s, of which 1262 unique, obtained from four dif-
ferent Web shops: Amazon.com [1], Newegg.com [10], Best-
Buy.com [4] and TheNerds.net [7]. The data of these shops
consists of 163, 672, 744, and 20 TV’s, respectively. The
products have on average 29 key-value pairs as stated fea-
tures in their product descriptions.

The interpretation of true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) in this
work is slightly different from usual. The dataset contains
409 duplicate pairs of TV’s. If two duplicate TV’s (one pair)
from different Web shops are clustered correctly, then this
is counted as one true positive. If two TV’s that are not
duplicates are clustered, this is counted as one false posi-
tive. TV’s that are not duplicates and that are not clustered
are counted as true negative. If two duplicate TV’s are not
clustered, this is counted as one false negative. When a clus-
ter contains more than two TV’s, all pairs are checked and
counted. So a cluster of three TV’s containing two duplicate
TV’s and one TV that is not a duplicate of the other two,
is counted as one true positive and two false positives.

Since TF-IDF, TMWM, and HSM are built on handling
just two Web shops, we can not make a fair comparison.
For this reason we have rebuilt these baseline methods. In-
stead of a clustering solution, the adjusted methods provide
a matrix of dissimilarities which in turn is processed by our
hierarchical clustering algorithm. These dissimilarities fall
in one of three categories: zero dissimilarity when the al-
gorithm detects a duplicate, positive infinity when the al-
gorithm indicates two products are not duplicates, and a
dissimilarity ∈ (0, 1), otherwise.

As we do not want the performance results to be specific
for one given dataset, we apply the bagging bootstrapping
procedure check [6] to provide robust performance compar-
isons between the methods. In each bootstrapping iteration,
we randomly sample approximately 63% of the data with re-
placement as the training set, and use the rest as the evalua-
tion set, where the ratio of duplicates versus non-duplicates
of the original dataset is maintained.

For each sample, the training set is first used to identify
which particular parameter set has the highest performance
in terms of F1-measure by performing a grid search. Next,
the obtained best parameter set is used on the evaluation set,

Algorithm 1 Multi-component Similarity Method

The input: Set S = {S1, ..., SK}, where Sk ∈ S contains all products
of Web shop k. Parameters α and β are threshold values for TMWM,
γ is the threshold similarity for two keys to be considered equal, ε
is the dissimilarity threshold for hierarchical clustering, and µ is the
fixed weight of the TMWM similarity, if it returns a duplicate. Fur-
thermore, the following functions are used:

• calcSim(q, r) the q-gram similarity for strings q and r;

• sameShop(pi, pj) true if shop is same for products i and j;

• diffBrand(pi, pj) true if brands of products i and j are different;

• key(q) the key from key-value pair (KVP) q; value(q) returns
the value from KVP q;

• exMW(p) all model words from the values of the attributes
from product p;

• mw(C,D) percentage of matching model words from two sets
of model words;

• TMWMSim(pi, pj , α, β) the TMWM similarity between the
products i and j using the parameters α and β;

• minFeatures(pi, pj) the minimum of the number of product fea-
tures that product i and j contain;

• hClustering(dist, ε) returns the clusters.

1: n = total number of products
2: dist = Rn×n

3: for all k = 1, . . . , K do
4: for all pi ∈ Sk do
5: for all pj ∈ S \ Sk do
6: if sameShop(pi, pj) or diffBrand(pi, pj) then
7: distpi,pj = ∞
8: else
9: sim = 0

10: avgSim = 0
11: m = 0 {number of matches}
12: w = 0 {weight of matches}
13: nmki = KV Pi {non-matching keys of pi}
14: nmkj = KV Pj {non-matching keys of pj}
15: for all KVP q in KV Pi do
16: for all KVP r in KV Pj do
17: keySim = calcSim(key(q), key(r)
18: if keySim > γ then
19: valueSim = calcSim(value(q), value(r))
20: weight = keySim
21: sim = sim+ weight ∗ valueSim
22: m = m+ 1
23: w = w + weight
24: nmki = nmki − q
25: nmkj = nmkj − r
26: end if
27: end for
28: end for
29: if w > 0 then

30: avgSim =
sim

w
31: end if
32: mwPerc = mw(exMW(nmki),exMW(nmkj))
33: titleSim = TMWMSim(pi,pj ,α, β)
34: if titleSim = −1 then
35: θ1 = m/minFeatures(pi, pj)
36: θ2 = 1− θ1
37: hSim = θ1 ∗ avgSim+ θ2 ∗mwPerc
38: else

39: θ1 = (1− µ) ·
m

minFeatures(pi, pj)
40: θ2 = 1− µ− θ1
41: hSim = θ1 · avgSim+ θ2 ·mwPerc+ µ ∗ titleSim
42: end if
43: distpi,pj = 1− hSim {transform to dissimilarity}
44: end if
45: end for
46: end for
47: end for
48: return hClustering(dist, ε) {return the found clusters}

generating a value of the F1-measure, precision, and recall.
We use 50 bootstrap-samples to provide accurate estimates
of these performance measures. These 50 bootstrap-samples
are the same for all methods. Also, we apply a Wilcoxon
signed rank test [17] to check if there are significant differ-
ences between the methods in terms of F1-measure.

Again, for a fair comparison between the methods, we ap-
ply hierarchical clustering to all methods to allow for clus-
tering of multiple products, instead of extending the imme-
diate sequential clustering as done in HSM. We do stress,
however, that hierarchical clustering requires dissimilarities
between all products among different Web shops, causing
extremely long running times when a lot of different pa-
rameter sets need to be checked, in combination with 50
bootstraps. Therefore, optimization by remembering simi-
larity values between strings and, where possible, between
products is necessary.

Our framework to run bootstraps with the algorithm is
set up in such a way that, with a multicore system, each
core runs the algorithm for all the bootstrap samples of a
single parameter set. Figure 1 shows an illustration of our
framework. Especially with a lot of bootstraps, calculating
dissimilarities between products in each new sample for hier-
archical clustering would be a waste of CPU time. Instead,
we calculate the dissimilarities between all possible combi-
nations of products of the different Web shops, 788,000 pairs
for the dataset we use. This means that for each bootstrap
we perform, all needed dissimilarities are known. Note, how-
ever, that our total set of products is still small enough to
gain an advantage out of this method. When the amount
and size of the bootstraps are relatively small compared to
a much larger set of products, this method could use more
running time because of an explosion in the amount of com-
binations of the total product set.

Since the choice of ε for hierarchical clustering has no
influence on the product dissimilarities, we can achieve ad-
ditional gains in running time by storing the dissimilarities
of the parameter set (without considering ε) in a local cache
for the CPU core that is assigned to that parameter set. We
can then let that core run the algorithm on all the parame-
ter sets while only varying ε, without having to recalculate
all dissimilarities. For example, when using 10 test values
for ε, this already reduces running time by a factor of close
to 10.

Additional reductions in running time can be achieved
in the calculation of product dissimilarities itself. Because
products in the same category use the same terminology, we
can pre-calculate the similarity values between all strings
that are used throughout the algorithm. We store these in
a global cache that is used by all cores to calculate their
initial product dissimilarities for the bootstraps. Again, the
reduction in running time can vary, in this case depending
on the algorithm: when a lot of calculations of similarities
between strings in the product description are occluded, for
example through conditions that are met early on in the al-
gorithm, many similarities would never be used. In our case,
however, we have to calculate 23 million similarity values,
with a running time of only 10 minutes on a single core of a
standard PC. We used a PC with a 2.4GHz quad core CPU
and 4GB of RAM.

With the framework optimizations above, we are able to
reduce the running time on a standard PC, theoretically,
from a few hundred years to a few hours. Note that storing

the local- and global caches to disk can also be convenient
when it would be necessary to re-run the program in case of
a system-crash or for testing purposes. An alternative, less
favorable, way to reduce running time would be focused on
reducing the amount of data that is considered, as done in
[18].

In this section, we first discuss the results of the three
benchmark methods TF-IDF, TMWM, and HSM in Sect. 4.1,
4.2 and 4.3, respectively. Next, we discuss the results of our
MSM in Sect. 4.4, followed by a comparison with the results
of the benchmark methods in Sect. 4.5.

4.1 TF-IDF Method
The TF-IDF method uses the parameter δ to decide whether

two products are duplicates. In the new framework that is
capable of handling multiple Web shops a dissimilarity mea-
sure is used instead of a similarity measure. For this reason
δ is converted to ε where ε = 1− δ. The TF-IDF algorithm
was trained using a grid search for the values of ε ranging
from 0.1 to 0.9 with steps of 0.1. On all 50 training sets the
value of 0.9 performed the best. Applying this value on the
50 test sets resulted in a F1-measure of 0.335 on average.
The average precision was 0.337, and the average recall was
0.334.

4.2 Title Model Words Method
TMWM uses two parameters α and ε. The parameter α is

used as a threshold for the cosine similarity of the product
titles. The higher α is, the more similar the titles have
to be in order that the associated products are considered
duplicates. If the cosine similarity of two titles is not higher
than α, the algorithm calculates a weighted similarity and
model words as explained in Sect. 2. In the new framework,
all similarities are converted to dissimilarities to be used in
the hierarchical clustering. As with the TF- IDF model, the
parameter ε is used as threshold to compare the dissimilarity
between two products.

For both parameters the training was done using a grid
search ranging from 0.1 to 0.9 with steps of 0.1. Table 1
shows the mean and standard deviation from the best val-
ues found using the 50 training sets. These values are lower
than the values found in [3], where TMWM is used for two
Web shops. We suspect this is due to the method of cluster-
ing. In the two Web shops case, two products are clustered
as soon as the similarity is higher than one of the parame-
ters. Low values for the parameters are undesirable because
this can result in many false positives. By using hierarchical
clustering this problem is overcome, all similarities (or dis-
similarities in our case) are calculated before products are
clustered. Then the most similar products are clustered and
since we do not allow the clustering of products from the
same Web shop, the results show that lower values for pa-
rameters are optimal. Using the best values of each of the 50
training sets on its corresponding test set resulted in an av-
erage F1-measure of 0.298. The average precision was 0.349

Table 1: Means and standard deviations of the best
values over 50 training sets for TMWM

Mean Standard deviation
α 0.622 0.084
ε 0.356 0.081

Product descriptions

Global Cache

strings

...
Parameter Set 2

Local Cache

...sample 1 sample n

Parameter Set 1

Local Cache

...sample 1 sample n

Parameter Set m

Local Cache

...sample 1 sample n

...core 1 core 2 core k

Best parameter set on
bootstrap sample 2

Best parameter set on
bootstrap sample 1

Best parameter set on
bootstrap sample n...

Global Cache = cache of string
similarities

Local Cache = cache of product
dissimilarities

Legend

Figure 1: Overview of the caching framework, with m parameter sets, k processing cores, and n bootstrap
samples.

Table 2: Means and standard deviations of the best
values over 50 training sets for HSM

Mean Standard deviation
α 0.612 0.033
β 0.240 0.049
γ 0.776 0.056
ε 0.824 0.102

and the average recall was 0.309. Compared to the results
in [3], we find more false positives (our precision is lower)
and we find less false negatives (our recall is higher). This
is expected when using lower values of α and ε.

4.3 The Hybrid Similarity Method
The Hybrid Similarity Method uses 4 parameters. The

first two parameters are the parameters of TMWM: α and
β, where β is equal to the ε of TMWM as defined in Sect. 2.
For all parameters we have used the same grid search ranging
from 0.1 to 0.9 with steps of 0.1. For most training sets, the
best value for α was 0.6, for a few sets it was 0.7. This
value is comparable with the value found for the standalone
TMWM. The best value for β was either 0.2 or 0.3. This
parameter is slightly stricter than the value in the standalone
TMWM model. The third parameter γ is the threshold for
deciding whether two keys are equal. The best value for γ
was not very stable for the 50 training sets, it was 0.7 or 0.8
most of the time, but was 0.6 or 0.9 for a few training sets.
The fourth parameter is ε. This parameter has the same
function as in TF-IDF and TMWM and is the threshold for
the clustering algorithm. When ε is higher, more products
are clustered, since a higher dissimilarity is allowed. While
training the best value for ε, it was either 0.8 or 0.9. This

means a small similarity in keys and model words is enough
to cluster two products. The mean and standard deviations
of the 4 parameters are found in Table 2. Using the best
values of each of the 50 training sets on its corresponding test
set resulted in an average F1-measure of 0.287. The average
precision was 0.237 and the average recall was 0.381. These
results are surprising to us, because HSM is outperformed
by both TF-IDF and TMWM. We compare the different
models in more detail in Sect. 4.5.

4.4 Multi-component Similarity Method
MSM uses 5 parameters. For all parameters in this model

we used a grid search ranging from 0 to 1 with steps of 0.1 to
find the best value for each of the 50 training sets. Table 3
shows the means and standard deviations of the parameters
of MSM.

The first two parameters are the parameters of TMWM:
α and β. α has the same interpretation as in TMWM and
HSM. The best value for α was 0.6 for all training sets but
one, where the best value was 0.7. This value is comparable
to the value found by TMWM and HSM. β is the thresh-
old to decide (if no match based on the cosine-similarity
occurred) whether the model continues using the similarity

Table 3: Means and standard deviations of the best
values over 50 training sets for MSM

Mean Standard deviation
α 0.602 0.014
β 0.000 0.000
γ 0.756 0.101
ε 0.522 0.082
µ 0.650 0.168

Table 4: Average performance measures of all meth-
ods

Method F1-measure precision recall
TF-IDF 0.335 0.337 0.334
TMWM 0.298 0.349 0.309

HSM 0.287 0.237 0.381
MSM 0.475 0.445 0.512

(titleSim) of the TMWM model or sets this similarity to -1.
When titleSim is -1, the model does not use the similarity
found by TMWM in the computation of the final similarity
(hSim). The best value for β for all 50 training sets was 0.
This has an important implication: titleSim is never set to
-1 which implies that the value found by TMWM is always
used in computing hSim, and titles with low similarity (i.e.,
close to 0) are very informative by lowering the final product
similarity.

The third parameter γ has the same function as in HSM,
it is the threshold for deciding whether two keys are equal.
The best values found for the 50 training sets show the same
behavior as in HSM. For most training sets the best value
was either 0.7 or 0.8, but for a few sets the best value was
either 0.6 or 0.9.

The fourth parameter ε is again used for the clustering
algorithm. The best value of ε was also not very stable for
the 50 training sets. The best values found were mostly 0.4,
0.5, or 0.6, for a few sets it was 0.7. These values for ε imply
that the clustering algorithm requires a lower dissimilarity
to cluster two TV’s than in HSM.

The fifth parameter is µ, which is the weight given to
the similarity found by TMWM titleSim in the computation
of hSim. Since the optimal value of β was always equal
to 0 for every training set, µ is an important parameter.
The value of µ was unstable for the 50 training sets. The
best values found were mostly in the range from 0.5 to 0.7,
but for some sets the value was 0.3, 0.4, or 0.9. With an
average optimal value of µ of 0.650, we can conclude that
the TMWM’s similarity value played the largest role in the
final similarity value, compared to the similarities of the
product attributes.

Using the best values of each of the 50 training sets on
their corresponding test set, resulted in an average F1-measure
of 0.475. The average precision was 0.445, and the average
recall was 0.512. All values of the performance measures are
clearly higher than the performance values of the measures
found for the three baseline methods: TF-IDF, TMWM,
and HSM. In the next section we analyze these performance
measures to determine whether they are statistically signif-
icant higher for MSM.

4.5 Comparison of All Methods
The main performance measure we use to assess whether

one method performs better than other methods is the F1-
measure. We also looked at the precision and recall of all
methods. As can be seen in Table 4, MSM scores better
on these average measures than all three baseline methods:
TF-IDF, TMWM, and HSM. We use Wilcoxon signed rank
tests to assess whether the differences in the F1-measure
are statistically significant. We use a significance level of
0.05 for these tests. In Table 5, the one-sided p-values
of the Wilcoxon signed rank test are shown. This table
clearly shows that the value of the F1-measure for MSM is

statistically significantly higher than the F1-measure of all
three baseline methods, even at a 0.001 significance level.
To assess how big the impact is of using the function diff-
Brand(i,j), we ran HSM where we only added this function.
The average F1-measure of HSM with diffBrand(i,j) was now
0.391. This indicates that this function contributed to more
than half of the increase in performance of MSM. It is re-
markable that HSM, contrary to [3], is now the worst per-
forming method in terms of F1 measure. The application
to more than two Web shops could play a role in this. The
method also has an even lower F1 score than TMWM it was
built on. A possible explanation could be over-fitting on
the training datasets. Although our proposed MSM had the
highest amount of parameters of all methods and still has
the highest performance in terms of F1 measure, the good
performance of the TF-IDF method, which has only one pa-
rameter in our application, is in line with this explanation.

Where in [3] the TF-IDF method had the worst perfor-
mance, it performed quite well as second-best in our setting
of multiple Web shops. This could be due to the fact that the
TF-IDF method takes into account the whole set of words
in the dataset of all Web shops, where the other methods do
not.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a method for the challenging

problem of product duplicate detection on the Web. Our
proposed method builds on the state-of-the-art Hybrid Sim-
ilarity Method [3], which extends the Title Model Words
Method [15] by making use of a similarity on key features
of the products. We further extended this framework on
several aspects.

First, we introduced brand-comparison of two product ti-
tles to exclude duplicates of different brands, using a man-
ually created list of brands. In every industry the number
of brands is limited, making it an excellent tool for dupli-
cate detection. Although this forms an additional manual
learning step for the algorithm, we think that maintaining
this list can be easily done, and perhaps automated, through
lists found on the Web. We showed this is worth consider-
ing, as over half of the improvement in the F1 score is due
to this extension. Second, we introduced the use of q-grams
with token length q = 3. Contrary to the word-based co-
sine similarity in the Hybrid Similarity Method, the q-gram
similarity supports partial word-matching, making it robust
in a context of short, informative descriptions with abbre-
viations on Web shops. Third, where the Hybrid Similarity
Method used the Title Model Words Method as a definitive
first clustering step, we instead extracted a similarity value
from it and used it less strictly in the clustering procedure.
Its optimal weight in the final similarity value showed that

Table 5: One-sided p-values of the Wilcoxon signed
rank test (H0 : µrow = µcolumn versus HA : µrow <
µcolumn).

p-value TF-IDF TMWM HSM MSM
TF-IDF x 1.000 1.000 0.000
TMWM 0.000 x 0.999 0.000

HSM 0.000 0.001 x 0.000
MSM 1.000 1.000 1.000 x

it played the largest role, compared to the similarities of the
product attributes.

To deal with multiple Web shops, we proposed a single-
linkage hierarchical clustering approach. Contrary to the
Hybrid Similarity Method, our proposed algorithm does not
make assumptions on the order of products to cluster. Al-
though we solved resulting scalability issues by preventing
redundant calculations through caching, the algorithm now
suffers from a more severe exponential growth in the amount
of product dissimilarities. Further research into scalability
and efficient parameter-selection is necessary, for example
through locality-sensitive hashing [2, 9].

Applying our new method to a dataset of TV’s of four Web
shops revealed that it significantly outperforms three base-
line methods: the Hybrid Similarity Method, Title Model
Words Method, and the well-known TF-IDF method, with
an F1 score of 0.475, compared to 0.287, 0.298, and 0.335,
respectively. Based on the surprisingly good performance
of the TF-IDF method, we believe it is worthwhile to do
further research into the use of information from the whole
dataset of products when comparing two individual prod-
ucts. One option would be to introduce this TF-IDF simi-
larity between two products as an additional component in
the between-product similarity of MSM.

Acknowledgment
The authors of this paper are partially supported by the
Netherlands Organisation for Scientific Research (NWO),
under the Mozaiek project ‘Semantic Web Enhanced Prod-
uct Search (SWEPS)’ (project 017.007.142), and the Dutch
national program COMMIT.

6. REFERENCES
[1] Amazon.com, Inc. http://www.amazon.com.

[2] A. Andoni and P. Indyk. Near-optimal Hashing
Algorithms for Approximate Nearest Neighbor in High
Dimensions. Commun. ACM, 51(1):117–122, 2008.

[3] M. Bakker, F. Frasincar, and D. Vandic. A Hybrid
Model Words-Driven Approach for Web Product
Duplicate Detection. In Proceedings of the 25th
International Conference on Advanced Information
Systems Engineering (CAiSE 2003), volume 7908 of
Lecture Notes in Computer Science, pages 149–161,
2013.

[4] Best Buy Co., Inc. http://www.bestbuy.com.

[5] M. Bilenko and R. Mooney. Adaptive Duplicate
Detection Using Learnable String Similarity Measures.
In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD 2003), pages 39–48, 2003.

[6] L. Breiman. Bagging Predictors. Machine Learning,
24(2):123–140, 1996.

[7] Computer Nerds International, Inc.
http://www.thenerds.net.

[8] A. Elmagarmid, P. Ipeirotis, and V. Verykios.
Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity
Search in High Dimensions via Hashing. In
Proceedings of the 25th International Conference on
Very Large Data Bases (VLDB 1999), pages 518–529.
Morgan Kaufmann Publishers Inc., 1999.

[10] Newegg Inc. http://www.newegg.com.

[11] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw Hill, 1983.

[12] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Pearson International Edition, 1st
edition, 2006.

[13] I. Thomas, W. Davie, and D. Weidenhamer. Quarterly
Retail E-Commerce Sales 3d Quarter 2013. U.S.
Census Bureau News, 2013.

[14] E. Ukkonen. Approximate String-Matching with
Q-grams and Maximal Matches. Theoretical Computer
Science, 92(1):191–211, 1992.

[15] D. Vandic, J.-W. van Dam, and F. Frasincar. Faceted
Product Search Powered by the Semantic Web.
Decision Support Systems, 53(3):425–437, 2012.

[16] Wikipedia: The free encyclopedia. http://wikipedia.
org/wiki/List_of_television_manufacturers.

[17] F. Wilcoxon. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1(6):80–83, 1945.

[18] C. Xiao, W. Wang, X. Lin, J. Yu, and G. Wang.
Efficient Similarity Joins for Near Duplicate
Detection. ACM Transactions on Database Systems
(TODS), 36(3):A:1– A:40, 2011.

