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Abstract

In this paper we propose the Semantic Tag Clustering Search (STCS) framework for enhancing the user experience in interacting

with tagging systems. This framework consists of three parts. The first part deals with syntactic variations by finding clusters of tags

that are syntactic variations of each other and assigning labels to them. The second part of the framework addresses the problem of

the lack of semantics in tagging systems by recognizing contexts and constructing semantic clusters for tags. The last, and final

part of the STCS framework, utilizes the clusters obtained from the first two parts to improve the search and exploration of tag

spaces. For removing syntactic variations, we use the normalized Levenshtein distance and the cosine similarity measure based

on tag co-occurrences. For creating semantic clusters, we employ two non-hierarchical and two hierarchical clustering techniques.

To evaluate the value of the semantic clusters, we develop a Web application called XploreFlickr.com for searching and browsing

through Flickr resources.
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1. Introduction

Nowadays, there are a lot of Web services where users can

employ tags to label content on the Web. The reason for the

popularity of collective tagging lies in its effectiveness. Recent

research shows that collective tagging introduces several benefits

for organizational knowledge creation and shared document

repositories [32]. Furthermore, it has been shown that users

mainly participate in collective tagging with the purpose to

share information with the community [3, 21]. These are very

encouraging signs for the growth of tagging systems and their

application in various domains.
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Flickr and Delicious are two well-known applications that

make use of tags. In this paper we focus on the Flickr service.

Users which are registered on the Flickr Web site can upload

photographs and assign tags to them. As with most tagging

systems, the user has no restrictions on the tags that can be used.

Though tags are a flexible way of categorizing data, there are

some limitations with the use of tags for the purpose of search

and exploration of tagging systems. Because users are free to

choose any tag, they can, for example, make typographical errors

or use syntactic variations. This results in having different tags

with the same meaning. An example of a typographical mistake

is ‘selfportait’, which should be written as ‘self portrait’. Search-

ing for ‘self portrait’ gives 1 265 127 more results than searching

for ‘selfportait’. Plurals and singulars, like ‘self portraits’, and
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‘self portrait’, are examples which are considered to be syntactic

variations. Typographical errors and syntactic variations of tags

are important aspects to consider when designing a search en-

gine for tagging systems. Google, for example, automatically

detects spelling mistakes in the query entered by the user. Often

you get ‘Did you mean...’ from Google where the engine tries to

suggest the correct query.

Furthermore, at the current moment users can use synonyms

for the same concept. These synonyms yield different results

when users search, explore, or retrieve information from a tag-

ging system. For instance, one user could have used the tag

‘city’ to annotate a picture, whereas another user could have

used ‘town’. When users search for ‘city’, the pictures who are

only tagged with ‘town’ will not be retrieved by the search en-

gine. This is why it is important to identify semantic variations

when considering the performance of search engines.

Users also describe the content of pictures in different ways.

For a picture which shows the interior of a house, most users

would use the tag ‘interior’, while others would use a tag like

‘inside’ or ‘furniture’. It is obvious that these tags are semanti-

cally related. When someone searches for ‘furniture’, they are

probably also interested in pictures that are annotated with ‘inte-

rior’. Another example of semantically related tags is ‘Web 2.0’,

‘Ajax’, and ‘XML’. Additionally, users can use tags that contain

homonymous words, like ‘apple’. When a user searches for

‘apple’, the search engine returns pictures related to the brand

‘Apple’ as well as pictures of apples. The search engine cannot

distinguish between the multiple meanings the word ‘apple’ has.

Another example of a homonym is ‘rock’, it can have the mean-

ing of the music style ‘rock’, but it can also be a large stone.

We address this problem by performing context detection. This

enables users to choose between the different meanings of tags

when they are searching or browsing a tag space.

In order to improve the performance of tagging search en-

gines, we need to deal with the previously described symp-

toms (typographical mistakes, syntactic variations, synonyms,

homonyms, and related tags). The currently used search engines

do not cope with these symptoms. In general, there are no struc-

tures, hierarchies, classifications, or clusters available in tagging

systems. A reason for this situation might be the enormous

amount of data. Better search engines for such tagging systems,

with higher precision and recall, could be valuable for many

users, organizations, and companies. For example, marketing

companies often need pictures in their daily activities and these

companies would certainly benefit from more structured tagging

systems. In this paper we improve the search and exploration

of tag spaces by coping with syntactic variations, typographical

mistakes, synonyms, homonyms, and related tags.

The research goal of this paper is to gain insight into the

possibilities of improving search and exploration in tag spaces,

especially for marketing companies. Related work reveals that

clustering techniques can be used to improve the search and

exploration of tag spaces [5]. Thus, the main research question

addressed in this paper is

How can one utilize clustering techniques to im-

prove the search and exploration of tag spaces?

In order to answer the research question we designed and im-

plemented an appropriate framework. Our solution is called the

Semantic Tag Clustering Search (STCS) framework. The frame-

work consists of three parts, a part where syntactic variations

are identified, a part where semantic clusters are derived, and a

part where one can search in tag spaces by using search methods

which utilize these clusters. A preliminary (short) presentation

of the framework is available in [30].

In our framework we consider two types of semantic cluster-

ing algorithms, namely the non-hierarchical and the hierarchical

semantic clustering algorithms. The non-hierarchical clusters

contain related tags, but there is no hierarchy inside (or between)
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these clusters. Hierarchical clusters on the contrary, do have

these hierarchies, either among tags or clusters of tags. For

the non-hierarchical clusters we select the algorithm proposed

in [28]. We choose to implement this algorithm because it al-

lows tags to appear in multiple clusters. This enables us to easily

detect different contexts by analyzing the different clusters of

a tag. The algorithm proposed in [27] is selected for the hier-

archical clusters. We chose for this approach as it is proven to

have a higher precision than the approaches presented in [25]

and [7]. An alternative could have been the algorithm in [12],

which is meant specifically for collaborative tagging systems,

like Delicious. The difference between a tagging system like

Flickr and Delicious, is that resources (Web sites) on Delicious

can be tagged by multiple users. This is not the case with the

resources (images) on Flickr, which is the focus of this paper.

The innovation of this paper stems from several aspects. The

syntactic variation clustering algorithm deals with the issues

that are left open in other papers, [27] e.g., and [28], such as

the bad performance of syntactic variation detection on short

tags. We also propose two adapted algorithms for clustering tags

that address the issues left open in [27] and [28]. So, in total

we have two types of clustering techniques (hierarchical and

non-hierarchical) and two instances of each type, the original

and the adapted ones. Thus, we implemented four semantic

clustering algorithms in total. Further, we propose two cluster-

based search methods, one for the non-hierarchical and one for

the hierarchical clusters. We also implemented a search engine

that is called the ‘Dummy’ search engine. This search engine

operates without the knowledge of the syntactic or semantic

clusters, it is used for benchmark purposes. In our evaluation,

we compare the cluster-based search engines and the Dummy

search engine with each other. Such an approach gives insight

into the possibilities of improving search and exploration in tag

spaces.

Based on the proposed clustering algorithms, we have built

a Web application called XploreFlickr.com, which is accessible

online [29]. The Web application makes it possible to compare

the results obtained from different clustering and search tech-

niques directly on a subset of the Flickr database. With these

results we investigate if clustering techniques improve the search

and exploration of tag spaces.

2. Related Work

For clustering related tags several measures based on co-

occurrence data are used in literature. In [28] the cosine sim-

ilarity is used. In this paper the authors also experiment with

different metrics to calculate the similarity between pairs of

vectors of co-occurrence data, including Euclidean and Man-

hattan distance, but achieved the best results with the cosine

similarity measure. Metrics computing absolute distance, like

the Euclidean and Manhattan distances, showed to be inappro-

priate, since they are more sensitive to significant variations in a

few elements than little variations in a large number of elements.

In the case of Flickr, one has to deal with a data sets with little

variations in a large number of elements. We therefore choose

to use the cosine similarity.

2.1. Syntactic Variations

Syntactic variations between tags is a well-known symptom

in tagging systems. Several authors have tried to deal with these

variations. In [9] the authors analyze the performance of the

Levenshtein distance [16] and the Hamming distance [10]. The

authors showed that the Levenshtein and Hamming distances

provide similar results for some syntactic variation types, for

example typographic errors and simple plurals/singulars. With

identifying variations based on the insertion/deletion of charac-

ters, Levenshtein gets significantly better results than Hamming.

However, both techniques do not perform as well as desired
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when identifying variations based in the transposition of adja-

cent characters (library/lirbary) or some kind of singulars/plu-

rals (library/libraries). Moreover, both methods improve their

results when candidate tags with less than four characters are

ignored. This indicates that the two methods cannot effectively

deal with short tags. The STCS framework addresses this issue

by introducing a semantic component in the syntactic clustering

algorithm. In [28] the authors also use the Levenshtein similarity

metric to group morphologically similar tags. They use a high

threshold to determine ‘similar’ words (‘cat’ and ‘cats’) as well

as misspellings (such as ‘theory’ and ‘teory’). Within each group

of similar tags, one tag is selected to be the representative of the

group, and the occurrences of tags in that group are replaced by

their representative.

2.2. Semantic Symptoms

In previous approaches, the semantic symptoms are dealt

with by either using a clustering technique which results in non-

hierarchical clusters of tags, or a hierarchical graph of either tags

or clusters of tags. In [28] the authors present a complete frame-

work where they address the syntactic variations in a tagging

system, create clusters of semantically related tags, and within

each cluster, identify the relationship between each tag pair. The

semantic clustering algorithm of [28] distinguishes itself from

other approaches, because tags can occur in multiple clusters.

For the clusters of related tags, in [28] the authors use the

cosine similarity measure on the co-occurrence data. Given the

highly similar pairs of tags, their algorithm considers each pair,

for example, ‘audio’ and ‘mp3’, as seeds constituting an initial

cluster, and then tries to enlarge this cluster by looking for tags

that are similar to both initial tags. This procedure is recursively

repeated for all tags, i.e., each new ‘candidate’ tag for a cluster

must be similar to the whole (possibly enlarged) set of tags in

that cluster. The algorithm generates a set of clusters, including

a number of identical clusters, resulting from distinct seeds that

are in fact similar to each other. It also generates highly similar

clusters, differing in only a few tags, which are in many cases

a consequence of the threshold to filter out unrelated pairs of

tags. Two smoothing heuristics are used to avoid having a high

number of these similar clusters. In order to determine the rela-

tionship between tags in a cluster, the authors use Swoogle [8]

and WordNet [19] to find ontologies where both tags occur.

In [5] the authors create semantic clusters of tags by using

co-occurrence data. For every tag in the data set, they find the

tags which co-occur the most with it. Next, the authors use a cut-

off value which is determined by the first and second derivative

of the co-occurrence count, where the co-occurrence count is on

the y-axis and the tag ids are ordered descending on the count

for the x-axis. The tags above this cut-off value are placed in a

graph with the co-occurrence counts as the weights of the edges.

To split the clusters further, the authors use the spectral bisection

algorithm [24]. Then they use the modularity function [20] to

determine whether or not to reject or accept the partitioning. The

algorithm then proceeds recursively on each accepted partition.

The authors conclude that clustering techniques can and should

be used in combination with tagging. They also argue that these

techniques can improve the search and exploration in tag spaces

in general.

In [7], [25], and [27] a subsumption-based model is used to

derive a hierarchy of semantically related tags. The title of [27]

suggests that their algorithms result in an ontology induced

from Flickr tags, but that is not the case. Their final result is a

hierarchical representation of tags. These hierarchies give no

information about domains, ranges, or the nature of the concept

relationships, thus, you do not have a real ‘ontology’. The results

of [7] and [25] are also concept hierarchies.

In [27] an adjusted subsumption model of [25] is used, hav-

ing as input co-occurrence statistics. The authors use this sub-

sumption model for building hierarchical trees. The subsumption
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model from [27] differs from [25] as [27] uses additional condi-

tions for statistical thresholds, like tag count restrictions. In [27]

the models of [7] and [25] are also implemented and tested on a

snapshot of the Flickr database as of July 2005. This database

consists of about 25 million images, which yield 65 million

annotations. The resulting trees are evaluated manually for all

three models. The algorithm proposed in [27] outperformed the

other two algorithms on the number of relevant relations found,

and on their correctness.

Another example of a hierarchical taxonomy is proposed

in [12]. Their algorithm builds a hierarchy of tags from anno-

tation data. It is an extensible greedy algorithm that makes use

of graph centrality. The authors determined several features

which impact the effectiveness of their algorithm. A prerequisite,

as they propose, is that the data contains natural hierarchical

relations. They argue that this seems to be a general feature of

tagging data. An empirical study in [14] showed that a large

proportion of tags in Delicious participate in hierarchical rela-

tionships.

In [26] the authors discuss how association rule mining is

used to analyze and structure folksonomies. The association

rules used in [26] can be seen as subsumption relations, so that

the rule mining can be used to learn a taxonomic structure. If

many resources tagged with ‘tag X’ are also tagged with ‘tag

Y’, this indicates, for example, that ‘tag Y’ can be considered a

super topic of ‘tag X’. The authors conclude that their method

can be applied for different purposes, such as recommending

tags, users, or resources, populating the super tag relation of a

folksonomy, and community detection.

2.3. Searching Tag Spaces

There is little literature where the focus is primarily on the

improvement of search and exploration in tag spaces by using

clustering algorithms. The previously discussed papers about

semantic clustering state that the main goal is the improvement

of search and exploration in tag spaces, but in fact, none of them

investigates this aspect. The scope of the papers does not go

beyond discussing the derived syntactic and/or semantic clusters.

In [1] and [2] seven different ranking algorithms for querying in

tag spaces are discussed and evaluated, including FolkRank [13]

and SocialPageRank [4]. These algorithms can be applicable

for users, tags, and resources (or a combination of these). The

authors mainly discuss adjusted algorithms for GroupMe.org.

In this paper we focus on the improvement of search and

exploration by using clustering algorithms. Therefore, we only

consider FolkRank [13], as SocialPageRank [4] is not suited for

topic-related ranking. We have decided not to include FolkRank

in the evaluation of the STCS framework. FolkRank is developed

with the idea that a resource can be annotated by multiple users.

In Flickr this is not possible, because only one user can upload

a specific picture and annotate that picture. In other systems,

like Delicious, it is possible to have multiple users linking to a

specific resource (a Web page). The FolkRank algorithm can

be used on the Flickr service with the necessary adjustments.

More specifically, the weight for an annotation a where tag

t appears on picture p will always be one. In the FolkRank

algorithm this weight is defined as total number of users which

has annotated picture p with tag t. The FolkRank algorithm

is based on the well-known PageRank algorithm [22]. If we

were to use FolkRank on our Flickr data set, we would loose

the important measure of ‘user weight’ (as all weights are 1 for

Flickr), which is why we have not included FolkRank in our

comparisons.

3. Framework Design

To answer the research question we propose the Semantic

Tag Clustering Search (STCS) framework. This framework

consists of three parts. The first part deals with syntactic issues

by clustering tags that are syntactic variations of each other and
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assigning labels to them. The second part of the framework

addresses the problem of the lack of semantics by identifying

semantically related tags in tag bases. The last part of the STCS

framework utilizes the clusters obtained from the first two parts

to improve search and exploration in tag spaces.

In this section we first give the formal definition of the prob-

lem that is investigated in this paper. After that, we discuss the

STCS framework in detail. We end the section with a short

conclusion on the proposed design and methodology.

3.1. Problem Definition

We now give a formal problem definition, for which we

follow the formulation given in [18]. The input data set is

defined as a tuple D = {U,T, P, r}, where U, T , and P are the

finite sets of users, tag IDs, and pictures, respectively, and r

is the ternary relationship r ⊆ U × T × P, defining the initial

annotations of the users. We can split the problem definition into

three parts: removing syntactic variations, finding semantically

related tags, and the improvement of searching in tag spaces

with this newly derived knowledge.

3.1.1. Removing Syntactic Variations

The first goal is to remove syntactic variations from tags, a

consequence of typographic mistakes or morphological varia-

tions. In order to detect these, we create a set T ′ ⊂ P(T ), where

P(T ) represents the power set of T . Each element of T ′ repre-

sents a cluster of tags where each tag occurs in only one element

(cluster), i.e., if X,Y ∈ T ′, X , Y , and a ∈ X and b ∈ Y , then this

implies a , b. Then we denote by m′ the bijective function that

indicates a label for each X ∈ T ′, m′ : T ′ → L. Furthermore, for

each l ∈ L there is a X ∈ T ′ such that m′ (x) = l and l ∈ X, i.e., l

is one of the tags in cluster X.

To clarify this mathematical definition we give an example.

Consider the set of tags (tag IDs) T = {1, 2, 3, 4, 5}. A possible

set T ′ could then be T ′ = {{1, 3} , {2, 4} , {5}}. The mappings

could then be {1, 3} → {1}, {2, 4} → {4}, and {5} → {5}. The set

L is then {1, 4, 5}, as these tags are the labels.

3.1.2. Finding Semantically Related Tags

The second goal is to create semantic clusters of tags. We

group semantically similar tags together, based on their meaning.

This means that we create a set T ′′, with T ′′ ⊂ P(L), that is a

cluster for elements from l ∈ L. This denotes that we cluster

only the tags that are labels of a syntactic cluster. An example of

a semantic cluster is {‘new york’, ‘manhattan’, ‘hudson bridge’,

‘central park’}. A tag should be able to be present in multiple

clusters. In this way, we can identify the different contexts of

tags, i.e., tags are related with multiple clusters and therefore

have multiple meanings.

3.1.3. Improving Search and Exploration in Tag Spaces

We define the ‘improvement of search and exploration in tag

spaces’ by the three aspects:

• The clusters provide information which can be used to

more precisely specify the query;

• The search engine recognizes syntactic variations and

contexts of tags;

• The precision and recall of the search engine results in-

creases.

3.2. Similarity Measures

In this section we discuss the different similarity measures

used in the STCS framework as well as the notation that is used

in this paper.

3.2.1. Levenshtein Distance Measure

In the STCS framework we use the normalized Levenshtein

distance. We denote this similarity by lvi j, which is the normal-

ized Levenshtein distance between tag i and j. The normalized
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Levenshtein distance is defined as

lvi j =
alvi j

max(length(ti),length(t j)) (1)

where alvi j is the absolute Levenshtein distance [16].

The normalized Levenshtein distance addresses the string

lengths. For example, if you have two strings of length 24, then

an absolute Levenshtein distance of 3 is not large. However, with

two strings of length 6 this distance is quite large (it is 50% of

the tag length). According to the absolute Levenshtein distance

these two distances are the same, but the normalized Levenshtein

distances are in this case 0.125 and 0.5. This indicates that,

according to the normalized Levenshtein distance, the first pair

is more similar than the second pair.

3.2.2. Co-occurrence Data and the Cosine Similarity

To measure the semantic relatedness between tags, we use

the cosine similarity based on co-occurrence vectors. The reason

for this is that the authors of [6], who give a systematic char-

acterization and validation of different tag similarity measures,

conclude that co-occurrence vectors combined with the cosine

similarity are useful for detecting concept hierarchies. We de-

note the cosine similarity by cos (a, b), where a and b are the

co-occurrence vectors.

The range of the function cos (a, b) where a, b ∈ Rm, with

m representing the number of tags, is [−1, 1]. In the case

that vectors a, b ∈ N0
m, the range is [0, 1]. We can interpret

cos (a, b) = 0 as ‘not semantically related’, and cos (a, b) = 1 as

‘fully semantically related’.

3.3. STCS Framework

As discussed in Section 3.1, the STCS framework is com-

posed of three parts. In Section 3.3.1 we describe the process

for removing syntactic variations from tags. In Section 3.3.2 we

focus on finding semantically related tags, where we compare

Semantic clustering

Collect raw data and 
clean the data set

Removing syntactic variations
Clean data set 

U x T x P

Create input graph

Mapping syntactic 
variations to tag labels

Filtered data set
U x L x P

Semantic clustering of the 
tag labels

Cluster on combined 
Levenshtein and cosine 

similarity measure

Cluster with the ‘numeric 
heuristic’

1

2

3

4

5

Improving search  &  exploration
Final result

Syntactical variation information 
& semantical clulster

Search Engine

Uses

Figure 1: Overview of the STCS framework

hierarchical versus non-hierarchical clustering methods. For

the non-hierarchical clustering types we implement the method

proposed by [28] and an adaptation of that algorithm. For the

hierarchical clustering types we use the method proposed by

[27] and also an adaptation of that method. In total we compare

4 methods with each other. The improvement of search and

exploration is addressed in Section 3.3.3. Figure 1 gives an

overview of the STCS framework.

3.3.1. Removing Syntactic Variations from Tags

The algorithm for the syntactic variation clustering uses

an undirected graph G = (T, E) as input. The set T contains

elements which represent a tag id, and E is the set of weighted

edges (triples (ti, t j,wi j)) representing the similarities between

tags. To calculate the weight wi j one needs the normalized

Levenshtein distance lvi j and the cosine similarity between tag i

and j. The weight wi j of an edge in the graph is then calculated

as shown in Equation 2.

wi j = zi j ×
(
1 − lvi j

)
+ (1 − zi j) × cos (vector (i) , vector ( j))

(2)
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where

zi j =
max(length(ti),length(t j))

length(tk) ∈ (0, 1] (3)

and

tk ∈ T , length (tk) ≥ length (t)∀t ∈ T ,

with ti, t j ∈ T .

Normalized Levenshtein values are not representative for

short tags, that is why the cosine value gets more weight as the

maximum tag length gets shorter. This yields better results for

shorter tags. Let us clarify this with an example. Given two

tags ‘walk’ and ‘wall’, the normalized Levenshtein similarity

is 1 − 1/4 = 3/4, a high value for words which are not syntactic

variations. Thus, if we use only the normalized Levenshtein

distance in this case, these words would be marked wrongly

as syntactic variations of each other. To address this problem

we use the cosine similarity based on co-occurrence vectors

and give it more weight for shorter tags. The cosine similarity

indicates the level of semantic relatedness between two tags,

as a corrective measure for syntactic similarity of short tags.

The cosine similarity for ‘walk’ and ‘wall’ is so low that the

framework correctly finds that these words are not syntactic

variations of each other.

To build the input graph we first construct a set of tag nodes

and edges (ti, t j, and wi j). When creating the set, only the pairs

where ti < t j should be considered, i.e., the tag ID i is smaller

than the tag ID j, as wi j equals w ji. With this set of tag nodes

and edges, the input graph is built. Then, a root node is created

and connected to each disconnected component of the graph,

Root

1
2

4

5

6
7

8

13

12
10

9

Figure 2: An example of an input graph for the syntactic variation clustering
algorithm

i.e., a cluster in the graph. The root is connected to a randomly

chosen tag from each cluster. An example of an input graph

for the syntactic clustering algorithm is shown in Figure 2. For

example, {1, 5, 6, 7} is a cluster which is connected to the root

by the randomly chosen tag ‘1’. The root node functions as a

pointer to clusters, which are used in the algorithm.

An overview of the algorithm for the syntactic clustering,

which uses the previously built input graph, is described in

Algorithm 1. This is step 2 of Figure 1.

Algorithm 1 Creating clusters that remove syntactic variation
1: for all t ∈ T s.t. root and t are connected do
2: for all edges e =

(
ti, t j,wi j

)
∈ E that are part of the cluster

of t do
3: if wi j < β then
4: E = E −

{(
ti, t j,wi j

)}
5: if no edge from root to ti then
6: create link from root to ti
7: end if
8: if no edge from root to t j then
9: create link from root to t j

10: end if
11: end if
12: end for
13: cleanClusters()
14: end for

From lines 1 and 2 we can see that the algorithm traverses

each cluster of the initial input graph. For each cluster that is

encountered, the algorithm checks every edge in the cluster. If

the weight of an edge is below a certain threshold β, the edge is

removed from the graph. When we remove an edge, we perform

a check on the tags that were connected by the removed edge in

lines 3 and 4. For both tags we analyze if they are still connected

to the root node. If that is not the case, an edge is added from

the root to that tag, which indicates that this tag now belongs to

a new singleton cluster. This process is described in lines 5 to 9.

The algorithm also ensures that a tag only appears once in a

cluster, this is accomplished by the cleanClusters() function in

line 13. This function cleans the graph such that the root node is

not reachable from two tags ti and t j and that there exists a path
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P from ti to t j with root < P. This is done by performing a depth

traversal from the root. When the function visits a tag node, it

is marked as ‘visited’. During the traversal, if we encounter a

tag node that has already been visited, we cut the connection

between the root and the currently traversed cluster. If we do

not perform this cut, the root is pointing to two identical clusters.

We know this because every node should be visited once if

we visit all nodes from the root using a depth traversal. The

result after the call to cleanClusters() is a set of distinct clusters

where each tag appears only once in a cluster. Let us clarify

this process with an example. Consider the input graph that is

given in Figure 2. Assume that only the edge between tag 1 and

5 and the edge between tag 5 and 6 are candidates for cutting

(according to the condition in line 3). After these edges are cut,

but before cleanClusters() is called in line 13, the root points

both to tag 5 and tag 6 (as a result of the algorithm). The root now

points to five tags, which indicates that we have five clusters, i.e.,

{1}, {5, 6, 7}, {6, 7, 5}, {2, 8, 9, 10}, and {4, 12, 13}. The function

cleanClusters() starts visiting tags 5, 7, 6. After that, it visits tag

1. Next, it visits tag 6, which has been previously visited. The

function cuts the edge between the root and tag 6, which merges

the two duplicate clusters. At the end we obtain four clusters,

i.e., {1}, {5, 6, 7}, {2, 8, 9, 10}, and {4, 12, 13}.

As a particularity, we find that the tagging data from Flickr

has some properties. There are lots of tags which contain num-

bers. For instance, there are a lot of camera and lens types

present. Because different cameras and lenses are semantically

related and the names often differ only by one or two characters,

there are many different cameras and lenses in one cluster. Also

tags containing years are commonly used, for instance: ‘spring

2008’ versus ‘spring 2009’. Product numbers also contain nu-

meric data, e.g., ‘BMW X5’ versus ‘BMW X6’.

To solve these issues, we propose a heuristic to deal with

these numeric properties. Step 3 of Figure 1 is this numeric

heuristic, which is similar to the previously described Algo-

rithm 1, but with a different condition for cutting an edge (line

3). For this heuristic in the case of Flickr, we cut an edge if

the extracted numbers from two tags are not equal to each other

while the letters are the same. For example, an edge connecting

‘Canon EF 24-105mm f/4 L IS USM’ and ‘Canon EF70-200mm

f/4L IS USM’ is cut as ‘241054’ does not equal ‘702004’. If only

one of the two tags contains numbers, or the extracted numbers

are equal, no edges are cut.

In step 4 of Figure 1 we create a new data set which contains

the tags that are a label of a syntactic cluster. The label of a

cluster is the most frequently occurring tag in the data set. The

newly created data set is used as input for the next steps.

3.3.2. Semantic Clustering

As shown in Figure 1, the semantic clustering process starts

after the first step is completed, i.e., the syntactic variations

have been removed from the data set. We now discuss the non-

hierarchical and hierarchical semantic clustering methods.

Non-hierarchical Clustering

The non-hierarchical algorithm that we adapt, is described in Al-

gorithm 2. It has originally been proposed by the authors of [28].

We indicate this clustering method by NHC (Non-Hierarchical

Clustering). The algorithm is different from a classical clus-

tering algorithm, as instead of using the centroid, all tags are

used to calculate the distance between two clusters. This has the

advantage that all the elements within a cluster must be similar

amongst each other, instead of being similar just to the centroid.

We improve the algorithm by replacing a heuristic for merging

similar clusters by two new heuristics.

In lines 1 to 10 of Algorithm 2 the initial clusters are created.

This is done by starting with each tag as a cluster, and adding

the rest of the tags to that cluster if they are sufficiently similar

to that cluster. A tag is sufficiently similar if the average cosine

of that tag with respect to all elements in the cluster are larger
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than χ. This is shown in line 5.

Algorithm 2 Semantic clustering
Require: avgcosine (a, b), as defined by Equation 4 gives the

average cosine between elements (a − b) and b
Require: normdiff (x, y), as defined by Equation 6 gives the

normalized difference between clusters x and y
1: C = {∅}

2: for all t ∈ T do
3: c = {t}
4: for all t′ ∈ T similar to t do
5: if average cosine of t′ with all tags in c is above χ then
6: c = c ∪ {t′}
7: end if
8: end for
9: C = C ∪ {c}

10: end for
11: C′ = {∅}

12: for all y ∈ C in descending order of cluster size do
13: for all y′ ∈ C in descending order of cluster size ∧ y′ , y

do
14: if y′ ⊆ y ∨ avgcosine (y′, y) > δ ∨ normdiff (y′, y) < ε

then
15: C = C − {y′}
16: y = y ∪ y′

17: end if
18: end for
19: C′ = C′ ∪ {y}
20: end for

Because many tags are similar to each other, the set of initial

clusters can contain many duplicate or nearly duplicate clusters.

Therefore we need to merge some of the clusters, which is

done in lines 11 to 20 of Algorithm 2. In [28], two heuristics

are proposed for this purpose. The first heuristic merges two

clusters if one cluster contains the other cluster. This means

that if the larger cluster contains all the tags of the smaller

cluster, we remove the smaller cluster. The second heuristic

checks if clusters differ within a small margin, i.e., the number

of different tags in the smaller cluster compared to the larger

cluster represents less than a percentage of the number of tags

in the smaller cluster. If this is the case, then the distinct words

from the smaller cluster are added to the larger cluster and the

smaller cluster is removed. The latter heuristic has limitations,

because it uses a constant percentage, i.e., a constant threshold

for merging clusters, no matter the size of the smaller cluster.

First, let us clarify these limitations in more detail. If one

would use a constant threshold, it is hard to choose such a

threshold value where the larger clusters do not merge too easily

and the smaller clusters too difficultly. Consider two clusters

K and L where |K| ≥ |L|, with |·| indicating the size of a set.

The maximum number of different elements for the two sets

to be merged is growing constantly with the size of cluster L.

This is clear when we analyze the function which calculates

the maximum number of different elements for the sets to be

merged. The function is: f (|L|) = bε · |L|c where ε is the al-

ready mentioned threshold. For example, for ε = 0.20 we have

f (|L|) = b0.20 · |L|c. If we evaluate f (30) we get 6. This means

if we have a cluster L with |L| = 30 and a cluster K with |K| ≥ 30,

L would be merged into K if |D| ≤ 6, where D = L − K. This

also means that any clusters with size below 4 are not merged,

because f (4) = 0. To address this, we propose a dynamic thresh-

old, which we will discuss below. Based on our experiments,

we found that a dynamic threshold, instead of a constant one,

improves the clustering technique.

We now discuss the modified version of the NHC algorithm,

which we name as STCS NHC (Semantic Tag Clustering Search

Non-Hierarchical Clustering). The STCS NHC employs the first

heuristic that is used in the NHC algorithm, which is a trivial

one, but does not use the second heuristic. The reason for this

is that the second heuristic provides serious limitations due to

the constant threshold (as previously discussed). We replace

this second heuristic with two new heuristics, which we call the

second and third heuristic from now on. The second heuristic

considers the semantic relatedness of the difference between two

clusters. The third heuristic considers the size of the difference

between two clusters in combination with a dynamic threshold.

We show that these three heuristics, the first proposed by [28],

and the second and third proposed in this paper, improve the

clustering technique from [28].
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The three heuristics are used in line 14 of the algorithm

introduced earlier. The part y′ ⊆ y represents the first heuris-

tic, avgcosine (y′, y) > δ represents the second heuristic, and

normdiff (y′, y) < ε represents the third heuristic. Basically, the

second heuristic, which we propose, merges two clusters K and

L, where |K| ≥ |L|, when the average cosine avg of all d ∈ L− K

and elements of the larger cluster is above a certain threshold δ.

The average cosine of these elements is defined as

avgcosine (K, L) =
∑

d∈L−K

Avgd
|L−K| , (4)

where

Avgd =
∑
x∈K

cos(vector(x),vector(d))
|K| , (5)

with |K| ≥ |L|.

The third heuristic merges the clusters when the normal-

ized difference between the clusters is smaller than a dynamic

threshold ε. The normalized difference η is defined as

η =
|D|
|L| , (6)

where D = L − K. We propose to define threshold ε as

ε =
φ
√
|L|
, (7)

and thus f (|L|) can be described as

f (|L|) = bε · |L|c =
⌊
φ ·

√
|L|

⌋
. (8)

One is able to tune the distribution of the maximum allowed

difference between clusters by means of the parameter φ. Thus,

we create a function that improves the clustering process, as it

takes better in account the size of the smaller cluster.

Hierarchical Clustering

For hierarchical clustering we adapt, as already said, the algo-

rithm of [27]. We denote this algorithm by HC (Hierarchical

Clustering). We first discuss the original proposed method and

then the modification we propose.

In [27] the authors define a subsumption model. In this

model, tag x potentially subsumes tag y (x is a parent of y) if

P(x|y) ≥ t and P(y|x) < t, (9)

Dx ≥ Dmin,Dy ≥ Dmin

Ux ≥ Umin,Uy ≥ Umin

where t is the co-occurrence threshold, Dx is the number of

documents in which tag x occurs, and Ux is the number of users

that use x in at least one image annotation.

The first step is to calculate the co-occurrence statistics.

Once the co-occurrence statistics are calculated, candidate term

pairs are selected using the specified constraints. A graph of

possible parent-child relationships is then built. To clean up the

graph, the co-occurrence of nodes with ancestors that are not

parents are removed. So for example, for a given term x, and two

potential parent terms pi and p j, if pi is also a potential parent

term of p j, then pi is removed from the list of potential parent

terms for term x. At the same time, the co-occurrence of terms x,

pi and p j in the given relationships indicates both that the (p j, x)

relationship is more likely than the simple co-occurrence might

indicate, and similarly that the (pi, p j) relationship should be re-

inforced in such a case, the author increments the co-occurrence

statistic by 1. After the paths are cleaned and reinforced, each

leaf in the tree is considered and the ‘best’ path is chosen up to

a root, given the (reinforced) co-occurrence weights. In the end,

these paths are coalesced into trees. The best path is chosen by

starting at a leaf and then choosing the best parent, i.e., the one

with the highest co-occurrence.

We propose a modified version of this algorithm, which we

denote by STCS HC (Semantic Tag Clustering Search Hierar-

chical Clustering). Instead of choosing the ‘best’ path up to a
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Figure 3: ‘Step-by-Step’ versus ‘Longest Path’, hierarchical clustering

root using a step-by-step method, we use the longest path from

a leaf up to a root. Figure 3 shows an example of a graph where

we need to find the ‘best’ path from leaf ‘D’. With the step-by-

step method proposed by [27], the ‘best’ path would be ‘D, C,

A’, because P(C|D) > P(B|D). With the longest path, the path

would be ‘D, B, A’, because P(B|D)+P(A|B) > P(C|D)+P(A|C).

Clearly the path ‘D,B,A’ is preferred as the total co-occurrence

values are larger, i.e., the total relationship weight is stronger.

3.3.3. Improving Search and Exploration in Tag Spaces

After the syntactic and semantic clusters are created, the

search engine can utilize these clusters to obtain the information

with which search can be improved. We start by retrieving all

the images which contain at least one of the query tags. The

results are sorted on a defined similarity measure between a

query and a picture. For this purpose, the cluster of a query tag

is also used in order to find the context. We begin by defining

the query q as a m dimensional vector of tags qi, and a picture

p as a n dimensional vector of tags p j: q =
[
q1 · · · qm

]
and

p =
[
p1 · · · pn

]
. Equation 10 shows function g(qi, p), which is

used to compute the similarity between a query tag and a picture.

g(qi, p) =
1

n × |Ci|

∑
c j∈Ci

n∑
k=1

cos
(
c j, pk

)
(10)

The function computes an average cosine similarity between

all cluster tags (including the query tag) and all picture tags.

The term Ci represents the cluster of tags to which qi belongs.

If there is more than one cluster for a particular tag, then this

represents the cluster that is chosen by the user.

For a given query, we first collect all the images. Then,

for each query tag we compute the similarity g(qi, p), of which

we compute the average across all query tags to obtain a final

similarity between the query q and a picture p. The retrieved

pictures are then sorted descending on the final similarity and

presented to the user.

An important feature of the search engine is the automatic

replacement of syntactic variations by their corresponding labels.

Steps 1 through 4 of Figure 1 generate labels which are mapped

to tags. These tags are then seen as variations of their tag label.

When a tag has no variations, the tag label is represented by

the tag itself. The search engine can utilize this information

by searching for each keyword not only on the verbatim key-

word, but also on all syntactic variations of the keyword. For

example, when the user searches for ‘self portraits’, the system

searches for ‘self portraits’, ‘self-portraits’, ‘selfportraits’ and

even ‘self portaits’. This greatly increases the recall, the number

of returned correct results. This method is independent of the

semantic clustering type (hierarchical or non-hierarchical).

Another feature of the search engine is that it is able to detect

contexts. If a tag can have multiple meanings, the search engine

asks the user to choose a cluster to indicate the meant sense for

the tag. In this way, clusters are used as approximations of the

many contexts a tag can participate in. For the non-hierarchical

clustering techniques we utilize the semantic clusters of a tag.

If a tag occurs in more than one cluster, it is considered to have

multiple contexts. The user then gets a message with the different

clusters that the current tag is in. For the hierarchical clustering

technique we assume the presence of multiple contexts if a tag

appears in more than one tree. For example, if the tag ‘Apple’ is

the child of the tag ‘Fruit’ in one tree, and a parent of ‘iPod’ in

another tree, then we infer that ‘Apple’ has two contexts.

Searching is also improved by providing the user useful infor-
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mation about the query. Each clustering type provides different

information, for instance, a hierarchical clustering technique

can provide information concerning the hierarchy, and a non-

hierarchical clustering technique can not. With this information

the user understands the semantic structure of the query and the

data, and can manually relax (or narrow) this query depending

on what the goal is.

We choose not to relax the queries automatically, because

this is not the pursued goal in this paper. The aim is to find which

clustering technique helps the most in improving searching by

choosing the correct contexts of tags. If we were to choose an

automated query relaxation technique, this could have a biased

effect on the clustering techniques. That is the reason why we

decide to let the user relax the queries.

There are different scenarios where the above technique can

be applied. Sometimes the user does not find enough results. It

could also be that there are too many results, or that the results

are not specific enough (when searching on something particu-

lar). In any case, the user is able to view semantic information

about the query. For the non-hierarchical clusters this means

that the user can inspect the whole cluster for each tag. The tags

within the cluster are ordered on cosine similarity with the query

tag so that the most similar tags are on top of the list. The hier-

archical clusters give the opportunity to provide the user with

more information about each tag, as we can show the position of

a tag within a tree. The user can then decide to manually relax

the query (by going one or more levels up the tree) or to use a

more constrained query (by going one or more levels down the

tree).

4. Framework Implementation

We provide an implementation of the STCS framework,

called XploreFlickr.com [29]. XploreFlickr.com is a Web appli-

cation implemented in Java. In this section we explain briefly

XploreFlickr.com and its features. We cover data processing,

together with the features for syntactic clustering, semantic clus-

tering, and improving search and exploration.

4.1. Data Processing

For the experiments based on the implementation of Xplore-

Flickr.com, we collected a data set from the Flickr database. To

lower the retrieval time, the data has been collected in paral-

lel from two non-overlapping intervals [2008-1-14, 2008-8-1]

and [2008-8-12, 2009-2-28]. The data set contains 1 683 111

associations, 57 009 users, 166 544 pictures, and 317 657 tags.

The data set is obtained by using the Flickr API [33]. All pic-

tures which belonged to the category ‘Interesting Photos’ and

were uploaded in the previously mentioned time intervals were

collected.

After collecting the data, we first perform some cleaning

steps. As already mentioned in Section 1, users have no lim-

itations when they add tags to pictures. Because of this, the

pictures in the initial data set have many unusable tags. To ad-

dress this problem we apply a sequence of filters. These filters,

for example, remove tags with unrecognizable signs, tags which

are complete sentences, etc. After applying these filters, we have

a final data set that we use as input for the STCS framework.

The final data set contains 1 231 818 associations, 50 986 dis-

tinct users, 147 132 pictures, and 27 401 tags. The syntactic

clustering makes use of the full cleaned data set. The seman-

tic clustering part and the ‘improving search and exploration’

part use the data set of the top 5000 most frequent tags (for

performance reasons).

4.2. Clustering algorithms

For the syntactic variations part, we implemented the cor-

responding framework step. The application creates mappings

between tag labels and possible syntactic variations of tags. For
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the semantic clustering part, we implemented two separate com-

ponents, one for the non-hierarchical clustering and one for the

hierarchical clustering. Each component is configured two times,

one time for the original clustering algorithm and one time for

the adapted clustering algorithm.

The algorithms for semantic clustering rely on the cosine

similarities between the tag co-occurrence vectors. For these

algorithms, the computational complexity is therefore O(n2),

where n is the number of tags. This is due to the fact that the

clustering algorithms need the cosine similarity for each pair of

tags, i.e., (n2 − n)/2 cosine similarities.

4.3. XploreFlickr.com search engine

With XploreFlickr.com, the user can choose between 5 differ-

ent search methods. There is the Dummy search engine, and the

search engines which utilize semantic clusters, provided by one

of the four semantic clustering methods presented in this paper

(NHC, STCS NHC, HC, and STCS HC). The Dummy method

is a search method which is used to benchmark the STCS frame-

work. We implemented the Dummy search to simulate ‘standard’

simple search engines. Such search engines retrieve the pictures

that contain at least one tag from the query and do not apply any

intelligent sorting of the results. The other four search methods

are cluster-based and utilize the search algorithm presented in

Section 3.3.3 to retrieve pictures.

Unlike the Dummy search engine, a cluster-based search

engine automatically detects syntactic variations in the query

and informs the user that the variations are appended to the query.

For example, when the query is ‘self portait’ (a typographical

mistake), pictures that are tagged with ‘self portait’ or ‘self

portraits’ are returned. By considering the clusters a tag occurs

in, the Web application also shows to the user the possible

contexts for the query. If more than one context is found, the

user is asked to select one of the contexts of the tag. After

the selection the search results consist of images related to that

specific meaning. For instance, when someone searches on

‘Apple’ the user should be asked to select the context of ‘Apple’

by proposing two different clusters, one cluster on ‘Apple’ and

‘fruit’ and one cluster on ‘Apple’ and ‘brand’. The images that

contain at least one of the selected cluster tags are returned and

sorted based on the average cosine similarity between the image

tags and the selected cluster tags.

The non-hierarchical search engines, which use the NHC

and STCS NHC clusters, present the contexts as clusters with

a flat textual representation. For instance, for the tag ‘New

York’, a cluster could be {‘New York’, ‘nyc’, ‘new york city’,

‘Queens’, ‘Central Park’, ‘Times Square’}. For the hierarchical

methods, which use the clusters from the HC and STCS HC,

the clusters are actually trees of tags which are shown on screen

in a hierarchical style. The context choice, which is activated

when multiple clusters/trees are found, remains the same for

both the non-hierarchical and hierarchical search methods. The

user selects one of the presented clusters/trees as the context for

a certain tag.

5. Evaluation

In this section we present and explain the results of removing

syntactic variations, creating semantic clusters, and the proposed

improvements for search and exploration in tag spaces. For all

algorithms, the evaluation on the training and test data sets is

done by an independent (from the authors) panel of three users.

The optimal parameter values for the algorithms were chosen by

applying a hill climbing procedure.

5.1. Syntactic Variations

We start by analyzing the results for syntactic variation de-

tection. Using a training set of 50 tags, we have found that the

optimal value for the threshold β (for cutting edges) is 0.62. The

algorithm for removing syntactic variations finds 1687 syntactic
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variations of the total 25 714 tags. In order to analyze the perfor-

mance of the system, we create a test set by randomly choosing

200 tag combinations that are classified as syntactic variations

by the STCS framework. The distributions of the tag length

for the test data set and the original data set are approximately

the same. The results indicate that the framework produces

10 mistakes. Thus, for this test data set, the precision is 0.95.

A few examples taken from these 10 errors are ‘clouds’ and

‘colours’, ‘blueberry’ and ‘blackberries’, and ‘Western Australia’

and ‘BestOfAustralia’. A few correct examples are: ‘flat-coated

retriever’ and ‘flatcoatedretriever’, ‘turquoise’ and ‘turqoise’,

and ‘autumn’ and ‘automne’.

Stemming algorithms can also be used to remove syntactic

variations between tags, but we have found that basic stem-

ming algorithms do not provide sufficient precision. In order

to compare the performance, we have chosen two well-known

stemming algorithms, Porter stemming [23] and Lovins stem-

ming [17]. We have found that stemming algorithms only find

syntactic variations in our context which are well-formed singu-

lar/plural variations. Other variations, for example ‘new york’

and ‘new-york’, or ‘fought’ and ‘fight’, are not found by the

stemming algorithms. This is the reason why the stemming

algorithms achieve low precision on our data set. For Porter’s

stemming algorithm, we report a precision of 0.19 and for Lovins

stemming algorithm a precision of 0.23. Clearly our algorithm,

which achieved a precision of 0.95, is outperforming the two

stemming algorithms.

We also found that the numeric heuristic of the algorithm

is important. On Flickr, a lens tag usually contains the brand,

product line, product attributes, aperture, and focal length. For

example, the tag ‘Canon EF 70-200mm f/4 L IS USM’ represents

a ‘Canon’ lens, of product line ‘EF’, with product attributes

‘L IS USM’, with aperture ‘f/4’, and focal length ‘70-200mm’.

Without the numeric heuristic, the lens tag ‘Canon EF 24-105mm

f/4L IS USM’ and ‘Canon EF 70-200mm f/4 L IS USM’ would

be considered as syntactic variations, although they represent

different lenses. The first lens has a focal length of ‘70-200mm’,

while the second lens has a focal length of ‘24-105mm’.

5.2. Semantic Clustering

We now first discuss the results of the non-hierarchical clus-

tering approach and then the results for the hierarchical cluster-

ing approach.

5.2.1. Non-hierarchical Clustering

The STCS NHC algorithm requires three parameters to be

set, χ, δ, and φ. In order to employ the hill climbing procedure,

we have used a training data set size of 100 clusters. The optimal

value for the threshold χ is 0.8, this threshold determines whether

or not a tag is added to a cluster during the initial cluster creation.

For the threshold δ we found a value of 0.7 to give the best

results. As parameters for the function that defines the dynamic

threshold ε we use φ = 0.8.

For the test data set, we randomly chose 100 clusters. We

did not take a larger sample because the process of manual

evaluating clusters is a time consuming task. For each cluster

the number of misplaced tags is counted, i.e., tags that should

have been placed in another cluster. The total number of tags

in this randomly selected test data set is 458 and we encounter

44 misplaced tags. Thus, for this data set, the error rate is

44/458 × 100 ≈ 9.61%.

One should note that most of the misplaced tags are part

of a large cluster (size of 20 or larger). For example, a cluster

of size 49 contained 21 misplaced tags. This cluster contains

tags about subjects like ‘outdoor’ and ‘nature’. There are also,

for example, tags which represent colors. Although colors are

somehow related to ‘nature’, we mark these tags as misplaced

as well.
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In general, the algorithm finds many relevant clusters. Exam-

ples are {‘rainy’, ‘Rain’, ‘wet’, ‘raining’}, {‘turquoise’, ‘aqua’,

‘clear’, ‘cyan’}, {‘iPod’, ‘iphone’, ‘mac’}, and {‘South’, ‘north’,

‘west’}. Furthermore, a lot of clusters are found that actually

contain tags from different languages. Examples of these clus-

ters are {‘Praha’, ‘Czech republic’, ‘praga’, ‘Czech’}, {‘paris’,

‘frankreich’, ‘francia’}, {‘Eau’, ‘Wasser’}, and {‘springtime’, ‘pri-

mavera’}.

To benchmark the STCS NHC algorithm with the original

algorithm proposed by [28], the NHC algorithm, we apply the

same evaluation procedure as before. We create a test data set

with 100 randomly chosen clusters, which contains 467 tags, to

estimate the error rate. The difference between the NHC and

STCS NHC algorithm, is that the NHC algorithm essentially

uses the heuristics 1 and 3 described in Section 3.3, with a

constant threshold ε for heuristic 3. Using the same training set

as for the STCS NHC algorithm, we find that the optimal value

for this constant threshold is ε = 0.2.

We encounter 61 misplaced tags, thus with this data set, the

error rate for [28] is 61/467×100 ≈ 13.06%. When we compare

this error rate to the error rate of our algorithm (9.61%), we

conclude, based on the error rate on the test data set, that our

algorithm outperforms the algorithm proposed in [28]. Further-

more we see that our algorithm produces 739 clusters, and the

algorithm in [28] produces 421 clusters. Thus, our algorithm

discovers more clusters and thus relationships between tags. A

performance summary is given in Table 1. As the cluster count

is not a sufficient measure for cluster quality in an economic

sense, we provide an extended user-based search evaluation (see

Section 5.3).

To further investigate the performance of our system, we

compare it with two other clustering algorithms: a fitness-based

clustering algorithm and the K-means algorithm. The used

fitness-based algorithm is presented in [15]. This algorithm

Table 1: Non-hierarchical semantic clustering, performance summary on the test
data set

Error Number Avg. Min / Max.
rate of cluster cluster

clusters size size
NHC 13.1% 421 4.6 2 / 63
STCS NHC 9.6% 739 4.4 2 / 67

uncovers the hierarchical and overlapping community structure

of complex networks using a fitness-based clustering algorithm.

It discovers the natural community of each node in a graph by

optimizing the fitness function using local iterative searching.

We implemented this algorithm by using the cosine similarity of

the co-occurrence vectors between the tags as edge weight. The

test set is the set of all clusters which contain the tags used in

the previously described test data set (467 tags). We report an

error of 14.22% on this data set.

Finally, we compare our algorithm with the K-means al-

gorithm [11]. We have applied the K-means algorithm on the

co-occurrence data using two distance measures, the Euclidean

distance, and the cosine distance. We report an error rate of

26.12% for the Euclidean distance and 16.24% for the cosine

distance. The cosine distance provides better results for this type

of data (co-occurrence data).

We can conclude that the STCS NHC algorithm, with respect

to the error rate, also performs better than the K-means algorithm

and the fitness-based algorithm presented in [15].

5.2.2. Hierarchical Clustering

For the HC and STCS HC algorithms, we have applied the

same procedure as before. The thresholds (t, Dmin, and Umin) are

determined using a training data set consisting of 100 clusters.

These 100 clusters are randomly chosen and evaluated by the

three users. The parameters are set to t = 0.40, Dmin = 30, and

Umin = 30. This gives the best trade-off between the number of

correct edges in the hierarchy and the error rate. Higher values

than 0.40 for the parameter t results in the absence of valid
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subsumption pairs.

To evaluate both hierarchical clustering algorithms, we se-

lected 91 trees from the total data set (trees represent the clusters

for the hierarchical algorithms). For each cluster, the proposed

subsumption pairs, i.e., the edges, are evaluated according to the

measures presented in [27]. Each proposed subsumption pair

is marked as correct, related, synonymous (including language

variants), inverted, or noise (erroneous).

The edges that are marked as correct are truly a ‘type of’

relationship. For example, ‘Color’→ ‘red’ is marked as correct,

because ‘red’ is a type of color. For generic terms like ‘lake’

and ‘park’, we considered instances of lakes or parks also to be

adequate children. An example of an edge that is of type ‘related’

is ‘restaurant’→ ‘food’. The ‘synonymous’ relationship type is

used when the parent and the child are synonyms; this can be

also in different languages. An example of this type of edge is

‘eyes’→ ‘ojos’ and ‘eyes’→ ‘eye’. Inverted types of edges are

edges where the child subsumes the actual parent. An example

of this is ‘red’→ ‘color’, this is clearly wrong as ‘red’ is a color,

and ‘color’ is not ‘a red’. Error or noise edges often contain

either Flickr specific or named entities as children or parents.

An example of a Flickr specific term is ‘HBW’, which stands for

‘Happy Bokeh Wednesday’. It refers to an online Flickr photo

contest (created by users) which is held every Wednesday.

Table 2 shows the evaluation results for the original method

proposed by [27] (HC algorithm), and the adapted version of it

(STCS HC algorithm). We can see that the STCS HC algorithm,

which uses the longest path selection method, has a better result

with respect to the total correct and synonymous relationships.

In other words, more correct and less synonymous relationships

are found. The error rate of the STCS HC is also approximately

twice as low.

Table 2: Relationship classification for hierarchical clustering

C
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E
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HC 37.10% 19.35% 34.68% 3.23% 5.65%
STCS HC 39.70% 23.60% 30.34% 3.75% 2.62%

5.3. Searching Tag Spaces

In this section we evaluate the improvement of search and

exploration in tag spaces. We first start by comparing different

search engines on XploreFlickr.com. The comparison is based

on the ‘precision’ of the first 24 results when a user queries the

system. Other statistical measures like accuracy, sensitivity, or

specificity are difficult to derive, as the size of the data set is too

large. To evaluate the usefulness of the different semantic clus-

ters, we performed a user-based questionnaire. Three persons

were presented for each search engine 70 queries, where for each

query 24 pictures were displayed. The queries were tags which

were located in multiple clusters and therefore, by the definition

of the STCS framework, have multiple contexts. The context

is predetermined and the cluster corresponding to this context

is utilized by the search engines for the retrieval of the pictures.

The user is instructed to mark the pictures which he or she finds

not to be a match with the query. We only considered the first

24 results for every query, because this is the number of results

which is returned on the first results page of XploreFlickr.com.

Table 3 shows the precision and inter-annotator agreements for

each search engine. We observe that the clusters obtained from

the STCS HC algorithm give the best results. By using the

Wilcoxon signed-rank test [31], we found three statistically sig-

nificant relationships, which are illustrated in Table 4. Our first

observation is that the cluster-based search engines clearly out-

perform the Dummy search engine. We further observe that both

the STCS HC and STCS NHC search engines outperform the

HC search engine.
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Table 3: Search engine evaluation
Precision Inter-

annotator
agreement

Dummy 88.91% 90.30%
NHC 95.04% 93.69%
STCS NHC 95.62% 94.64%
HC 94.32% 94.01%
STCS HC 96.19% 95.03%

Table 4: Statistically significant findings at α = 5%
Relation

ALL > Dummy
STCS NHC > HC
STCS HC > HC

Besides evaluating if the semantic clusters improve the search

precision, we also evaluated their ability to recognize different

contexts of tags. The method of [28] (NHC) finds 214 tags

which occur in at least two different clusters, this means that

these tags have at least two different contexts. The STCS NHC

algorithm finds 368 tags with at least two contexts for each

tag. After an analysis of all proposed contexts, we find that

the STCS NHC algorithm finds more and correct contexts than

the NHC algorithm. An example of a tag in the data set which

has multiple contexts is the tag ‘daughter’. This tag is found in

the semantic cluster {‘baby’, ‘daughter’}, but also in the cluster

with the tags {‘mother’, ‘daughter’, ‘father’}. When one uses

XploreFlickr.com and chooses the first cluster only baby girl

pictures are found, but for the second cluster all kind of family

pictures are presented. The same analysis is performed on the

suggested contexts for the hierarchical clusters. We find that the

HC algorithm detects 46 tags with at least two clusters, and the

STCS HC algorithm detects 54 tags with at least two clusters.

6. Conclusions and Future Work

In this paper we have presented the Semantic Tag Clustering

Search (STCS) framework for searching and browsing through

tag spaces. Our framework makes use of clusters to deal with

syntactic and semantic variations of tags.

For the syntactic clustering process we propose a measure

that uses the normalized Levenshtein value in combination with

the cosine value based on co-occurrence vectors. In this way we

are able to detect syntactic variations of short tags. The results

also show that tags which contain numbers can cause unwanted

results. The ‘numeric heuristic’ in the STCS framework effec-

tively deals with this issue and is therefore highly recommended.

We have shown that the STCS syntactic variation algorithm

achieves a precision of 0.95 on our test data set.

We compared two non-hierarchical (NHC, STCS NHC) and

two hierarchical (HC, STCS HC) semantic clustering techniques.

Besides the regular semantic related tags, we observe that the

STCS NHC algorithm is able to find clusters of tags which are

synonyms represented in different languages. There are some

problems with the non-hierarchical clustering methods, as cer-

tain clusters are quite large. The result of this is that there are

clusters which contain tags that are individually semantically

related, but the semantic relatedness as a whole, is low. We deal

with this issue by introducing a heuristic for merging clusters

with a dynamic threshold, which is implemented by the STCS

NHC algorithm. Consequently, on the test data set, the STCS

NHC algorithm outperforms the NHC algorithm. The results ob-

tained from the experiments show that the STCS NHC algorithm

performs better in terms of precision, and produces finer-grained

clusters. For semantic clustering we have employed a different

method for finding a path in order to improve clustering. Unlike

the HC algorithm, the STCS HC algorithm considers all paths

when determining the path from a tag node to the root. Our

results show that the STCS HC algorithm provides better perfor-

mance than the HC algorithm by finding more correct ‘type of’

relationships and less synonymous relationships.

We have found that clusters can be used to provide valuable

information for tag search engines. In the STCS framework,
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different tag contexts are detected by considering tags which

appear in more than one cluster. When considering the precision

for the first 24 pictures, we conclude that all search methods

significantly provide higher precision than the Dummy search

method. We find that the search methods that utilize the clus-

ters from the STCS HC and STCS NHC algorithms obtain the

highest precision. The precision of these search methods is sig-

nificantly higher than the precision of the search method that

uses the clusters of the original HC algorithm.

6.1. Future Work

There are several aspects of the STCS framework which

could be improved. First, we would like to further improve

the syntactic variation detection process. One could investigate

how to detect syntactic variations which contain abbreviations

of words. Also, the use of an adapted Levenshtein algorithm,

where the different edit operations have different costs, should be

investigated. Second, the non-hierarchical semantic clustering

leaves also room for improvement. In this paper we propose two

new heuristics for merging similar clusters. The condition to

merge is a disjunction of the two new heuristics and an earlier

proposed heuristic. One could also consider other combinations,

like a conjunction of the two new heuristics, to investigate if this

improves the clustering process. Finally, for the improvement

of search and exploration, one could analyze user statistics by

for the different cluster-driven search methods. With this infor-

mation one gets insight in the user interaction with a tag space

search engine for a considerable amount of time.
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